As every design process starts from the requirements document, hardware design is no exception. A detailed specification is created from these requirements which drives the schematic drawing phase. An often neglected part is the selection of parts to accomplish an electronic design. Selecting parts with high availability and less lead delivery times is an important task. Another aspect is selecting the components packages as these affect the board (PCB) area and the assembly process. A denser PCB may require a higher manufacturing class and thus increase production costs. A good understanding of the PCBA production phases is required to have an efficient design that can be produced smoothly in quantities without disruptions.
Producing is not the end of the line though. Testing is another major factor that should be considered. There are many test strategies employed depending on the technology used, production quantities, and yield. The board shall have provisions for the selected method(s) of testing, like In-Circuit Test, Functional Test, JTAG/Boundary Scan, or other custom testing.
Understanding the above issues explains why there are many failures in kick-start type projects when it comes to hardware. Taking the wrong decisions may end up well out of the estimated cost and time budget. We use top-of-the-line CAD tools (Altium Designer) to tackle all these aspects of product design and lifecycle maintenance.
Our hardware experience with systems that went to production offers many years of experience in embedded systems design, starting from specifications down to product support. Our portfolio of work includes dc motors, sensing, microcontrollers, FPGAs, and mechanical integration. In addition, design tools offer strong collaboration capabilities enhancing documentation, changes, and reviews.